Establishment of a Novel Model for Anticancer Drug Resistance in Three-Dimensional Primary Culture of Tumor Microenvironment

نویسندگان

  • Tatsuya Usui
  • Masashi Sakurai
  • Shuhei Enjoji
  • Hideyoshi Kawasaki
  • Koji Umata
  • Takashi Ohama
  • Nobuyuki Fujiwara
  • Ryotaro Yabe
  • Shunya Tsuji
  • Hideyuki Yamawaki
  • Shoichi Hazama
  • Hiroko Takenouchi
  • Masao Nakajima
  • Ryouichi Tsunedomi
  • Nobuaki Suzuki
  • Hiroaki Nagano
  • Koichi Sato
چکیده

Tumor microenvironment has been implicated in tumor development and progression. As a three-dimensional tumor microenvironment model, air liquid interface (ALI) organoid culture from oncogene transgenic mouse gastrointestinal tissues was recently produced. However, ALI organoid culture system from tissues of colorectal cancer patients has not been established. Here, we developed an ALI organoid model from normal and tumor colorectal tissues of human patients. Both organoids were successfully generated and showed cystic structures containing an epithelial layer and surrounding mesenchymal stromal cells. Structures of tumor organoids closely resembled primary tumor epithelium. Expression of an epithelial cell marker, E-cadherin, a goblet cell marker, MUC2, and a fibroblast marker, vimentin, but not a myofibroblast marker, α-smooth muscle actin (SMA), was observed in normal organoids. Expression of E-cadherin, MUC2, vimentin, and α-SMA was observed in tumor organoids. Expression of a cancer stem cell marker, LGR5 in tumor organoids, was higher than that in primary tumor tissues. Tumor organoids were more resistant to toxicity of 5-fluorouracil and Irinotecan than colorectal cancer cell lines, SW480, SW620, and HCT116. These findings indicate that ALI organoid culture from colorectal cancer patients may become a novel model that is useful for examining resistance to chemotherapy in tumor microenvironment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell

Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...

متن کامل

In vitro three-dimensional tumor microenvironment models for anticancer drug discovery.

Anticancer drug discovery has long been hampered by the poor predictivity of the preclinical models. There is a growing realization that the tumor microenvironment is a critical determinant of the response of cancer cells to therapeutic agents. The past 5 years have seen a great deal of progress in our understanding of how the three-dimensional microenvironment modulates the signaling behavior ...

متن کامل

Silicate fiber-based 3D cell culture system for anticancer drug screening.

BACKGROUND Three-dimensional (3D) in vitro cultures can recapitulate the physiological in vivo microenvironment. 3D Modeling techniques have been investigated and applied in anticancer drug screening. MATERIALS AND METHODS A silicate fiber scaffold was used for 3D cell cultures, and used to model the efficacy of anticancer drugs, such as mytomicin C and doxorubicin. RESULTS A unique 3D stru...

متن کامل

I-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model

Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...

متن کامل

Three-Dimensional Hepatocellular Carcinoma/Fibroblast Model on a Nanofibrous Membrane Mimics Tumor Cell Phenotypic Changes and Anticancer Drug Resistance

Three-dimensional (3D) in vitro tissue or organ models can effectively mimic the complex microenvironment of many types of human tissues for medical applications. Unfortunately, development of 3D cancer models, which involve cancer/stromal cells in a 3D environment, has remained elusive due to the extreme complexity of the tumor microenvironment (TME) and the stepwise progression of human cance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016